An Evaluation of Asynchronous Software Events on Modern Hardware



Runtimes and applications that rely heavily on asynchronous event notifications suffer when such notifications must traverse several layers of processing in software. Many of these layers necessarily exist in order to support a general-purpose, portable kernel architecture, but they introduce considerable overheads for demanding, high-performance parallel runtimes and applications. Other overheads can arise from a mismatched event programming or system call interface. Whatever the case, the average latency and variance in latency of commonly used software mechanisms for event notifications is abysmal compared to the capabilities of the hardware, which can exhibit orders of magnitude lower latency. We leverage the flexibility and freedom of the previously proposed Hybrid Runtime (HRT) model to explore the construction of low-latency, asynchronous software events uninhibited by interfaces and execution models commonly imposed by general-purpose OSes. We propose several mechanisms in a system we call Nemo which employs kernel mode-only features to accelerate event notifications by up to 4,000 times and we provide a detailed evaluation of our implementation using extensive microbenchmarks. We carry out our evaluation both on a modern x64 server and the Intel Xeon Phi. Finally, we propose a small addition to existing interrupt controllers (APICs) that could push the limit of asynchronous events closer to the latency of the hardware cache coherence network.

Kyle C. Hale
Kyle C. Hale
Assistant Professor of Computer Science

Hale’s research lies at the intersection of operating systems, HPC, parallel computing, computer architecture.